
Engineering Desing II ©2024 Korea Univ.

Comparison between Systolic Array and
Vector Multiplier based on FPGA Implementation

1st DuHyeon Kim
School of Electrical Engineering

Korea University
Seoul, Republic of Korea

kdhluck@naver.com

Abstract—This paper compares systolic arrays and vector
multipliers on the Xilinx xcu250 FPGA for matrix
multiplication. Systolic arrays excel in timing consistency and
scalability due to inherent pipelining, while vector multipliers
require complex pipelining, leading to higher resource usage
and limited scalability. The findings highlight trade-offs in
resource efficiency and performance for matrix multiplication
workloads.

I. INTRODUCTION
The rapid rise of machine learning accelerators targeting

data centers has led to a surge in hardware innovations.
NVIDIA has introduced versatile GPGPUs capable of large-
scale LLM training and inference, while major tech
companies like Google, AWS, and Meta are focusing on
developing proprietary AI chips tailored to their specific
service requirements. This paper explores the comparative
performance of systolic arrays and vector multipliers when
implemented on FPGA platforms, offering insights into their
potential roles in this evolving landscape.

The initial verification and analysis of such ML
accelerators are often conducted rapidly on FPGA platforms.
In this study, we implement a weight-stationary basic systolic
array and an adder-tree-based vector multiplier on Xilinx's
xcu250 UltraScale+ architecture FPGA. Through this
implementation, we analyze timing, power characteristics,
and FPGA resource utilization, providing a comprehensive
evaluation of the fundamental performance and efficiency of
MXU (Matrix Unit) building blocks.

II. PRELIMINARIES

A. Systolic Array

A systolic array is a control-minimized methodology

based on processing elements (PEs). Each PE contains a MAC
(Multiply-Accumulate) unit and performs computations as
long as data flows are provided in sync with the timing
requirements. The key advantage of systolic arrays lies in their
minimal data control overhead.

Systolic arrays are typically implemented using either the
weight stationary (WS) or output stationary (OS) approach. In
the WS approach, weights are held within the PEs while
outputs are propagated outside the array. In contrast, the OS
approach retains the output (partial sum) within the PEs,
allowing weights and input activations to flow through the
array.

In this paper, we adopt the weight stationary approach,
leveraging the TPUv1 architecture as a reference. A simplified
TPU module is implemented, including basic control logic
and buffers, to analyze its performance.

B. Vector Multiplier (Adder-tree based)

A vector multiplier operates by producing an output

vector directly from a vector input without requiring
additional data setup. It simply processes the input data
through multipliers to generate the output. For matrix
multiplication, where summation of elements is required, an
adder-tree-based architecture is typically employed. This
structure is commonly used in GPUs, which execute
thousands of vector multipliers in parallel using a large
number of threads, with a focus on managing and controlling
the resulting computations efficiently.

In this paper, we implement a pure vector multiplier
architecture without pipelining, focusing on its fundamental
operation. Considerations for pipelining are reserved for
future exploration and discussion.

C. FPGA Features
FPGAs are versatile hardware platforms that provide

configurable logic resources, making them ideal for
prototyping and implementing custom architectures. At the
core of FPGA functionality is the Configurable Logic Block
(CLB), which includes Look-Up Tables (LUTs) and registers.
LUTs are small memory elements used to implement
combinational logic functions, while registers support
sequential operations. In the Xilinx xcu250 UltraScale+
FPGA, LUTs can operate as logic elements or memory
components, such as distributed RAM, enabling a wide range
of design possibilities.

The xcu250 UltraScale+ FPGA offers extensive resources,
including 1,728,000 LUTs, 3,456,000 registers, and 2,688
block RAM tiles. In this study, only a small fraction of these
resources is used, highlighting the resource efficiency of the

Engineering Desing II ©2024 Korea Univ.

implemented architectures while leaving ample room for
scalability and optimization.

III. TESTED ARCHITECTURE
In this paper, the tested architecture consists of three

Buffers (result, input, and weight) and control units as the
basic components. Two types of MXUs, namely systolic
arrays and vector multipliers, are integrated into the design.
The architecture is implemented to perform matrix
multiplication for square matrices of sizes 8, 16, 32, and 64.
Functionality is validated, and the design undergoes synthesis,
placement, and routing using Vivado, with timing constraints
(.xdc) applied for accurate evaluation.

A. Systolic Array Architecture

B. Adder tree based Vector Multiplier

C. Key Flags (Vivado)

In this implementation, Vivado flags were used to control
synthesis and ensure design integrity:

• dont_touch: Applied to prevent optimization of
registers (weight reg, din reg) in PEs.

• use_dsp: Enabled for wires carrying partial sums and
multiplications to utilize DSP units.

• ram_style: Set to block for buffer memories to allow
consistent and objective resource utilization
comparisons.

IV. IMPLEMENTATION RESULTS

A. FPGA Utilizations

TABLE I. SYSTOLIC ARRAY UTILIZATION

Utils

Matrix Size (NxN)
N = 8 N = 16 N = 32 N = 64

LUT 202 656 1502 4125
FF 2643 11091 42724 167434
BRAM 14 38 132.5 491.5
DSP 64 256 1024 4096

Fig. 1. Utilization of systolic array based on different Matrix size.

Figure Lab

TABLE II. VECTOR MULTIPLIER UTILIZATION (NOT PIPELINED)

Utils

Matrix Size (NxN)
N = 8 N = 16 N = 32 N = 64

LUT 38 87 169 325
FF 522 2060 8207 32787
BRAM 12 38 132.5 491.5
DSP 72 304 1248 5056

Fig. 2. Utilization of Vector Multiplier array based on different Matrix size.

B. Timing (Max Delay)

TABLE III. MAX DELAY PATH (NOT PIPELINED)

T (ns)
Matrix Size (NxN)

N = 8 N = 16 N = 32 N = 64

Systolic Array 4.995 4.904 4.443 6.433

Vector Multiplier
(non-pipelined) 9.383 13.413 24.552 54.936

Vector Multiplier
(pipelined) 6.16 8.986 8.509 22.722

Vector Multiplier
(pipelined + DSP Flag) 6.16 8.986 9.44 25.555

Fig. 3. Maximum Data Path Delay

C. Vector Multiplier pipelined

TABLE IV. VECTOR MULTIPLIER UTILIZATION (PIPELINED)

Utils

Matrix Size (NxN)
N = 8 N = 16 N = 32 N = 64

LUT 38 (38) 87 (87) 9129 (169) 36166 (325)

FF 1546 (522) 6156 (2060) 30735 (8207) 122899
(32787)

BRAM 12 (12) 38 (38) 132.5 (132.5) 491.5 (491.5)
DSP 96 (72) 384 (304) 1152 (1248) 4608 (5056)

Fig. 4. 1stage pipelined (N=8, 16) / 2stage pipelined (N=32)

TABLE V. MAX DELAY PATH (PIPELINED)

T (ns)
Matrix Size (NxN)

N = 8 N = 16 N = 32 N = 64

Systolic Array 4.995 4.904 4.443 6.433
Vector Multiplier
(pipelined) 6.16 8.986 8.509 22.722

Fig. 5. Original systolic array / Pipelined Vector multiplier critical delay

TABLE VI. MAX DELAY PATH (PIPELINED + DSP FLAG)

T (ns)
Matrix Size (NxN)

N = 8 N = 16 N = 32 N = 64

Systolic Array 4.995 4.904 4.443 6.433
Vector Multiplier
(pipelined) 6.16 8.986 9.44 25.555

Fig. 6. Original systolic array / Pipelined Vector multiplier critical delay

Utils

Matrix Size (NxN)
N = 8 N = 16 N = 32 N = 64

LUT 38 (38) 87 (87) 169 (169) 326 (325)

FF 1546 (522) 6156 (2060) 30735 (8207) 122899
(32787)

BRAM 12 (12) 38 (38) 132.5 (132.5) 491.5 (491.5)
DSP 96 (72) 384 (304) 1664 (1248) 6656 (5056)

Engineering Desing II ©2024 Korea Univ.

V. COMPARISONS

A. Non Pipelined Utilization

For a non-pipelined vector multiplier, the FPGA resource

utilization is significantly lower compared to a systolic array.
This difference arises because the systolic array inherently
incorporates pipelining within its architecture and requires
additional logic to set up input data and align output data for
results, leading to higher resource consumption.

However, as the matrix dimensions increase, the non-
pipelined vector multiplier exhibits a nearly twofold increase
in maximum delay with each size increment. In contrast, the
systolic array maintains a relatively consistent delay
regardless of the matrix size due to its efficient dataflow
structure.

B. Pipelined Utilization

To enable a more valid comparison, the vector multiplier

was modified to include pipelining. For smaller matrices (N=8,
N=16), a single-stage pipeline was introduced just before the
adder tree. For larger matrices (N=32), an additional pipeline
stage was added at the level 2 adder of the adder tree, resulting
in a two-stage pipeline. This modification allowed the design
to meet the 100 MHz timing constraint successfully.

After introducing pipelining, the comparison between the
pipelined vector multiplier and the systolic array revealed that

the overall FPGA resource utilization became more
comparable. Notably, DSP and LUT utilization increased
significantly in the pipelined vector multiplier. The DSP
increase is attributed to path division within the ALU caused
by pipelining in the adder tree. Similarly, the LUT usage
increased, as certain paths that could not fully leverage DSP
resources defaulted to LUT-based CLBs. This highlights a key
challenge: as matrix dimensions grow, the pipelined vector
multiplier requires careful consideration of timing and
additional pipeline stages, which negatively impact design
scalability compared to the systolic array.

The increased pipelining in the vector multiplier
significantly raises FPGA utilization due to longer data paths,
yet its throughput remains less than half that of the systolic
array. This highlights the inherent limitations of vector
multipliers for large-scale matrix multiplication, as pipelining
improves timing at the cost of higher resource usage and
reduced scalability compared to systolic arrays.

C. Pipelined Utilization + DSP Flag in pipelined Path

To reduce excessive LUT usage in pipelined paths, the
use_dsp flag was applied. The higher LUT utilization in
systolic arrays compared to vector multipliers is mainly due to
the data setup controller, not the computation units.

Using DSP units lowered LUT usage but significantly
increased DSP utilization, highlighting a trade-off between
these resources. The sharper increase in LUT utilization when
DSPs are not used suggests that DSPs are more cost-effective
for such tasks.

Ultimately, pipelining in vector multipliers remains
resource-intensive and technically challenging, regardless of
whether LUTs or DSPs are used. This reinforces the
complexity and cost of implementing effective pipelining
strategies.

VI. CONCLUSION
This implementation enabled a comparative analysis of

FPGA utilization and critical delay between systolic arrays
and vector multipliers. The results highlight the scalability and
optimized latency of systolic arrays, driven by their dataflow-
based pipelined architecture for matrix multiplication. In
contrast, the complexity of pipelining strategies required for
vector multipliers to achieve comparable latency underscores
the inherent advantages of systolic arrays in large-scale matrix
operations.

Engineering Desing II ©2024 Korea Univ.

In conclusion, systolic arrays, with their simplified control
logic, are well-suited for large-scale matrix multiplications.
On the other hand, vector multipliers are more effective when
deployed in smaller units within large MXUs, as seen in GPU
architectures, where efficient logic controls numerous parallel
multipliers. This distinction provides valuable insight into the
design trade-offs and the optimal use cases for each
architecture.

REFERENCES
[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,

et al., “In-Datacenter Performance Analysis of a Tensor Processing
Unit,” 44th International Symposium on Computer Architecture (ISCA),
Toronto, Canada, June 2017.

[2] H. T. Kung, “Why Systolic Architectures?” IEEE Computer, vol. 15,
no. 1, pp. 37–46, Jan. 1982.

[3] T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon, et al., “The
Design Process for Google's Training Chips: TPUv2 and TPUv3,”
IEEE Micro, DOI: 10.1109/MM.2021.3058217, 2021.

