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Abstract—This paper compares systolic arrays and vector 
multipliers on the Xilinx xcu250 FPGA for matrix 
multiplication. Systolic arrays excel in timing consistency and 
scalability due to inherent pipelining, while vector multipliers 
require complex pipelining, leading to higher resource usage 
and limited scalability. The findings highlight trade-offs in 
resource efficiency and performance for matrix multiplication 
workloads.  

I. INTRODUCTION  
The rapid rise of machine learning accelerators targeting 

data centers has led to a surge in hardware innovations. 
NVIDIA has introduced versatile GPGPUs capable of large-
scale LLM training and inference, while major tech 
companies like Google, AWS, and Meta are focusing on 
developing proprietary AI chips tailored to their specific 
service requirements. This paper explores the comparative 
performance of systolic arrays and vector multipliers when 
implemented on FPGA platforms, offering insights into their 
potential roles in this evolving landscape. 

The initial verification and analysis of such ML 
accelerators are often conducted rapidly on FPGA platforms. 
In this study, we implement a weight-stationary basic systolic 
array and an adder-tree-based vector multiplier on Xilinx's 
xcu250 UltraScale+ architecture FPGA. Through this 
implementation, we analyze timing, power characteristics, 
and FPGA resource utilization, providing a comprehensive 
evaluation of the fundamental performance and efficiency of 
MXU (Matrix Unit) building blocks. 

II. PRELIMINARIES 

A. Systolic Array 

 
A systolic array is a control-minimized methodology 

based on processing elements (PEs). Each PE contains a MAC 
(Multiply-Accumulate) unit and performs computations as 
long as data flows are provided in sync with the timing 
requirements. The key advantage of systolic arrays lies in their 
minimal data control overhead. 

Systolic arrays are typically implemented using either the 
weight stationary (WS) or output stationary (OS) approach. In 
the WS approach, weights are held within the PEs while 
outputs are propagated outside the array. In contrast, the OS 
approach retains the output (partial sum) within the PEs, 
allowing weights and input activations to flow through the 
array. 

In this paper, we adopt the weight stationary approach, 
leveraging the TPUv1 architecture as a reference. A simplified 
TPU module is implemented, including basic control logic 
and buffers, to analyze its performance. 

B. Vector Multiplier (Adder-tree based) 

 
A vector multiplier operates by producing an output 

vector directly from a vector input without requiring 
additional data setup. It simply processes the input data 
through multipliers to generate the output. For matrix 
multiplication, where summation of elements is required, an 
adder-tree-based architecture is typically employed. This 
structure is commonly used in GPUs, which execute 
thousands of vector multipliers in parallel using a large 
number of threads, with a focus on managing and controlling 
the resulting computations efficiently. 

In this paper, we implement a pure vector multiplier 
architecture without pipelining, focusing on its fundamental 
operation. Considerations for pipelining are reserved for 
future exploration and discussion. 

C. FPGA Features 
FPGAs are versatile hardware platforms that provide 

configurable logic resources, making them ideal for 
prototyping and implementing custom architectures. At the 
core of FPGA functionality is the Configurable Logic Block 
(CLB), which includes Look-Up Tables (LUTs) and registers. 
LUTs are small memory elements used to implement 
combinational logic functions, while registers support 
sequential operations. In the Xilinx xcu250 UltraScale+ 
FPGA, LUTs can operate as logic elements or memory 
components, such as distributed RAM, enabling a wide range 
of design possibilities. 

The xcu250 UltraScale+ FPGA offers extensive resources, 
including 1,728,000 LUTs, 3,456,000 registers, and 2,688 
block RAM tiles. In this study, only a small fraction of these 
resources is used, highlighting the resource efficiency of the 
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implemented architectures while leaving ample room for 
scalability and optimization. 

III. TESTED ARCHITECTURE 
In this paper, the tested architecture consists of three 

Buffers (result, input, and weight) and control units as the 
basic components. Two types of MXUs, namely systolic 
arrays and vector multipliers, are integrated into the design. 
The architecture is implemented to perform matrix 
multiplication for square matrices of sizes 8, 16, 32, and 64. 
Functionality is validated, and the design undergoes synthesis, 
placement, and routing using Vivado, with timing constraints 
(.xdc) applied for accurate evaluation. 

A. Systolic Array Architecture 

    
B. Adder tree based Vector Multiplier 

   
C. Key Flags (Vivado) 

In this implementation, Vivado flags were used to control 
synthesis and ensure design integrity: 

• dont_touch: Applied to prevent optimization of 
registers (weight reg, din reg) in PEs. 

• use_dsp: Enabled for wires carrying partial sums and 
multiplications to utilize DSP units. 

• ram_style: Set to block for buffer memories to allow 
consistent and objective resource utilization 
comparisons. 

IV. IMPLEMENTATION RESULTS 

A. FPGA Utilizations 

TABLE I.  SYSTOLIC ARRAY UTILIZATION 

# 
Utils 

Matrix Size (NxN) 
N = 8 N = 16 N = 32 N = 64 

LUT 202 656 1502 4125 
FF 2643 11091 42724 167434 
BRAM 14 38 132.5 491.5 
DSP 64 256 1024 4096 

Fig. 1. Utilization of systolic array based on different Matrix size. 

Figure Lab 

TABLE II.  VECTOR MULTIPLIER UTILIZATION (NOT PIPELINED) 

# 
Utils 

Matrix Size (NxN) 
N = 8 N = 16 N = 32 N = 64 

LUT 38 87 169 325 
FF 522 2060 8207 32787 
BRAM 12 38 132.5 491.5 
DSP 72 304 1248 5056 

Fig. 2. Utilization of Vector Multiplier array based on different Matrix size. 

B. Timing (Max Delay) 

TABLE III.  MAX DELAY PATH (NOT PIPELINED) 

T (ns) 
Matrix Size (NxN) 

N = 8 N = 16 N = 32 N = 64 

Systolic Array 4.995 4.904 4.443 6.433 

Vector Multiplier 
(non-pipelined) 9.383 13.413 24.552 54.936 

Vector Multiplier 
(pipelined) 6.16 8.986 8.509 22.722 

Vector Multiplier 
(pipelined + DSP Flag) 6.16 8.986 9.44 25.555 

Fig. 3. Maximum Data Path Delay 

C. Vector Multiplier pipelined 

TABLE IV.  VECTOR MULTIPLIER UTILIZATION (PIPELINED) 

# 
Utils 

Matrix Size (NxN) 
N = 8 N = 16 N = 32 N = 64 

LUT 38 (38) 87 (87) 9129 (169) 36166 (325) 

FF 1546 (522) 6156 (2060) 30735 (8207) 122899 
(32787) 

BRAM 12 (12) 38 (38) 132.5 (132.5) 491.5 (491.5) 
DSP 96 (72) 384 (304) 1152 (1248) 4608 (5056) 

Fig. 4. 1stage pipelined (N=8, 16) / 2stage pipelined (N=32) 

TABLE V.  MAX DELAY PATH (PIPELINED) 

T (ns) 
Matrix Size (NxN) 

N = 8 N = 16 N = 32 N = 64 

Systolic Array 4.995 4.904 4.443 6.433 
Vector Multiplier 
(pipelined) 6.16 8.986 8.509 22.722 

Fig. 5. Original systolic array / Pipelined Vector multiplier critical delay 

TABLE VI.  MAX DELAY PATH (PIPELINED + DSP FLAG) 

T (ns) 
Matrix Size (NxN) 

N = 8 N = 16 N = 32 N = 64 

Systolic Array 4.995 4.904 4.443 6.433 
Vector Multiplier 
(pipelined) 6.16 8.986 9.44 25.555 

Fig. 6. Original systolic array / Pipelined Vector multiplier critical delay 

# 
Utils 

Matrix Size (NxN) 
N = 8 N = 16 N = 32 N = 64 

LUT 38 (38) 87 (87) 169 (169) 326 (325) 

FF 1546 (522) 6156 (2060) 30735 (8207) 122899 
(32787) 

BRAM 12 (12) 38 (38) 132.5 (132.5) 491.5 (491.5) 
DSP 96 (72) 384 (304) 1664 (1248) 6656 (5056) 
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V. COMPARISONS 

A. Non Pipelined Utilization 

 
For a non-pipelined vector multiplier, the FPGA resource 

utilization is significantly lower compared to a systolic array. 
This difference arises because the systolic array inherently 
incorporates pipelining within its architecture and requires 
additional logic to set up input data and align output data for 
results, leading to higher resource consumption. 

However, as the matrix dimensions increase, the non-
pipelined vector multiplier exhibits a nearly twofold increase 
in maximum delay with each size increment. In contrast, the 
systolic array maintains a relatively consistent delay 
regardless of the matrix size due to its efficient dataflow 
structure. 

B. Pipelined Utilization 

 
To enable a more valid comparison, the vector multiplier 

was modified to include pipelining. For smaller matrices (N=8, 
N=16), a single-stage pipeline was introduced just before the 
adder tree. For larger matrices (N=32), an additional pipeline 
stage was added at the level 2 adder of the adder tree, resulting 
in a two-stage pipeline. This modification allowed the design 
to meet the 100 MHz timing constraint successfully. 

After introducing pipelining, the comparison between the 
pipelined vector multiplier and the systolic array revealed that 

the overall FPGA resource utilization became more 
comparable. Notably, DSP and LUT utilization increased 
significantly in the pipelined vector multiplier. The DSP 
increase is attributed to path division within the ALU caused 
by pipelining in the adder tree. Similarly, the LUT usage 
increased, as certain paths that could not fully leverage DSP 
resources defaulted to LUT-based CLBs. This highlights a key 
challenge: as matrix dimensions grow, the pipelined vector 
multiplier requires careful consideration of timing and 
additional pipeline stages, which negatively impact design 
scalability compared to the systolic array. 

The increased pipelining in the vector multiplier 
significantly raises FPGA utilization due to longer data paths, 
yet its throughput remains less than half that of the systolic 
array. This highlights the inherent limitations of vector 
multipliers for large-scale matrix multiplication, as pipelining 
improves timing at the cost of higher resource usage and 
reduced scalability compared to systolic arrays. 

C. Pipelined Utilization + DSP Flag in pipelined Path 

 
 

To reduce excessive LUT usage in pipelined paths, the 
use_dsp flag was applied. The higher LUT utilization in 
systolic arrays compared to vector multipliers is mainly due to 
the data setup controller, not the computation units. 

Using DSP units lowered LUT usage but significantly 
increased DSP utilization, highlighting a trade-off between 
these resources. The sharper increase in LUT utilization when 
DSPs are not used suggests that DSPs are more cost-effective 
for such tasks. 

Ultimately, pipelining in vector multipliers remains 
resource-intensive and technically challenging, regardless of 
whether LUTs or DSPs are used. This reinforces the 
complexity and cost of implementing effective pipelining 
strategies. 

VI. CONCLUSION 
This implementation enabled a comparative analysis of 

FPGA utilization and critical delay between systolic arrays 
and vector multipliers. The results highlight the scalability and 
optimized latency of systolic arrays, driven by their dataflow-
based pipelined architecture for matrix multiplication. In 
contrast, the complexity of pipelining strategies required for 
vector multipliers to achieve comparable latency underscores 
the inherent advantages of systolic arrays in large-scale matrix 
operations. 
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In conclusion, systolic arrays, with their simplified control 
logic, are well-suited for large-scale matrix multiplications. 
On the other hand, vector multipliers are more effective when 
deployed in smaller units within large MXUs, as seen in GPU 
architectures, where efficient logic controls numerous parallel 
multipliers. This distinction provides valuable insight into the 
design trade-offs and the optimal use cases for each 
architecture. 
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